

ESCAPE

ESCAPE-2 2nd Dissemination Workshop

Time	Title	Speaker
14:00-14:15	Welcome and Introduction to ESCAPE-2	Peter Bauer, Nils Wedi, Daniel Thiemert
14:15-14:30	WP1: Mathematics and algorithms	Luca Bonaventura
14:30-14:45	WP2: Programming models and DSL	Carlos Osuna
14:45-15:00	WP3: Weather and Climate Benchmarks: HPCW	Erwan Raffin, David Guibert, Ralf Mueller, Michiel Van Ginderachter
15:00-15:15	WP4: VVUQ	Adrien Bruneton, Rudy Chocat, Daniel Beltran, Mario Acosta
15:15-15:30	Discussion	All
15:30-15:45	Coffee break	
15:45-16:00	Uptake of ESCAPE-2 by ESiWACE-2	Florian Ziemen, Joachim Biercamp
16:00-16:15	UK Excalibur exascale initiative	Chris Maynard, Bryan Lawrence
16:15-16:30	DoE E3SM developments	Gary Geernaert, Xujing Jia Davis
16:30-17:00	WMO Research Board action on Exascale	Kris Rowe, Mark Govett
17:00-17:15	Vulcan developments	Oli Fuhrer
17:15-17:30	Discussion	All
17:30	Adjourn	

https://confluence.ecmwf.int/display/ESCAPEII/ESCAPE-2+Home **Partners:**

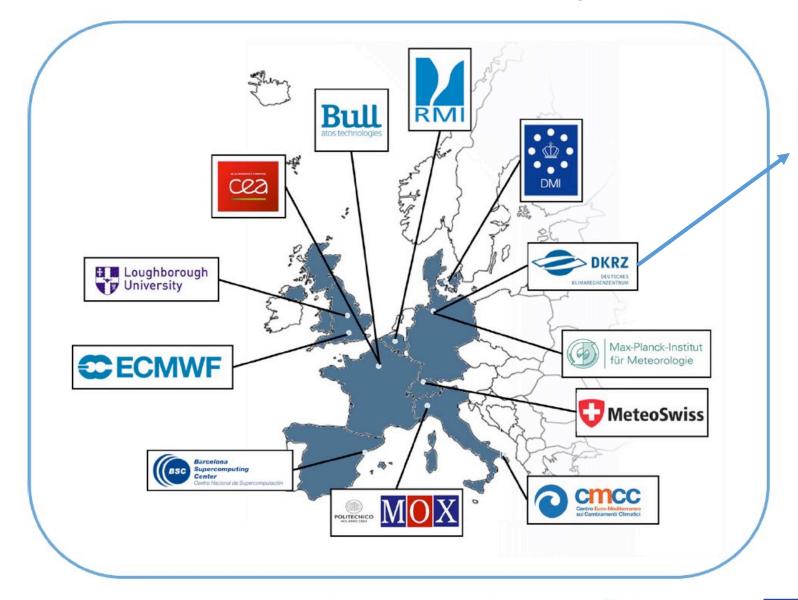
ESCAPE-2 Objectives

Headline objective:

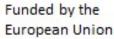
ESCAPE-2 will develop world-class, extreme-scale computing capabilities for European operational numerical weather and climate prediction, and provide the key components for representative benchmarks to be deployed on extreme-scale demonstrators and beyond

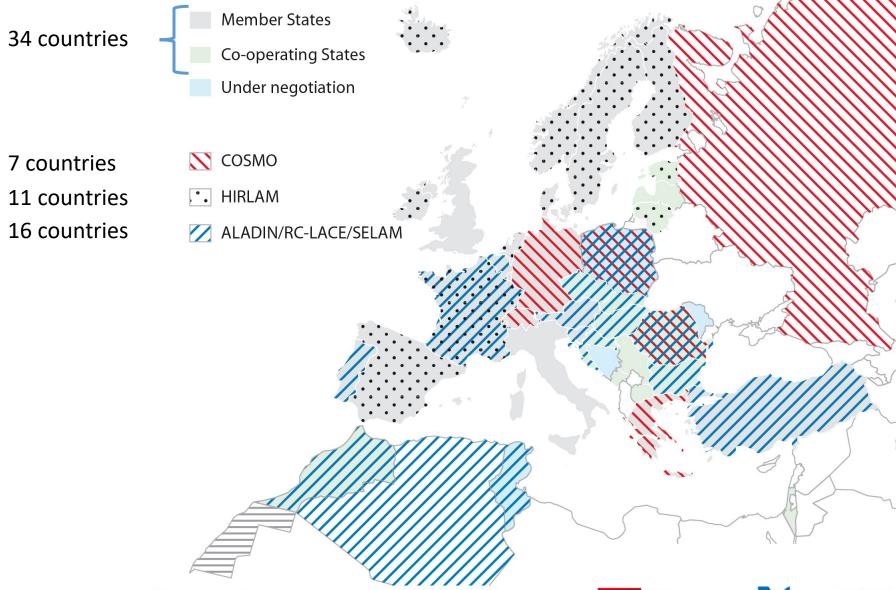
Specific objectives:

- Combine frontier research on mathematics and algorithm development and extreme-scale, high-performance
 computing applications with novel hardware technology → to design scientifically flexible and sustainable weather and
 climate prediction systems
- 2. Develop and apply a **domain-specific language (DSL) concept** for the weather and climate community → to maximize flexibility, programmability and performance portability to heterogeneous hardware solutions across different weather and climate models
- 3. Establish weather and climate model benchmarks based on world class European prediction models → to enable deployment on energy efficient and heterogeneous HPC architectures, in particular Extreme-scale Demonstrators (EsD)
- 4. Develop a **cross-disciplinary Verification, Validation, Uncertainty Quantification (VVUQ) framework** → to establish exascale-ready verification and uncertainty quantification tools for weather and climate prediction and beyond
- 5. Produce an **open-source software framework** → to accelerate mathematical algorithm development, foster continued leadership of European weather and climate prediction models and sustain commercialisation of weather-dependent innovative products and services in Europe



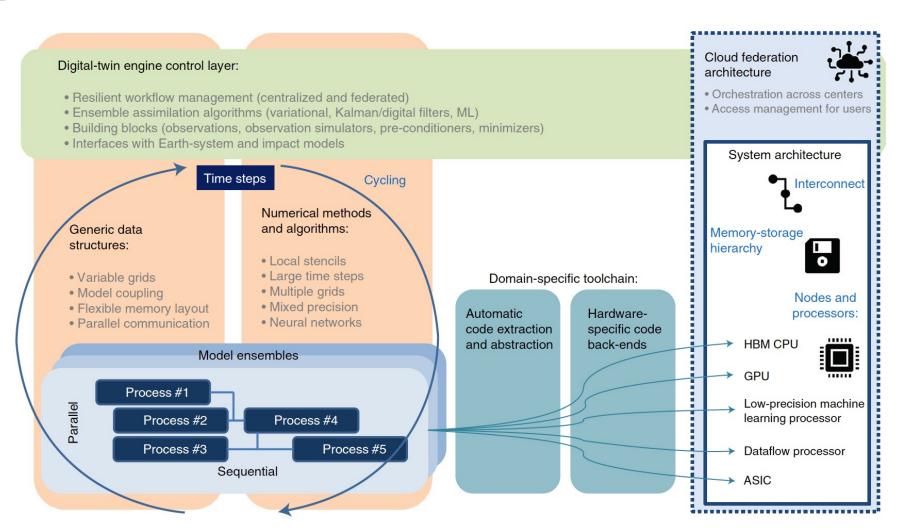
ESCAPE-2 Partnership





ESCAPE 2 ESCAPE = ESCAPE-2 European impact map

Key elements to progress



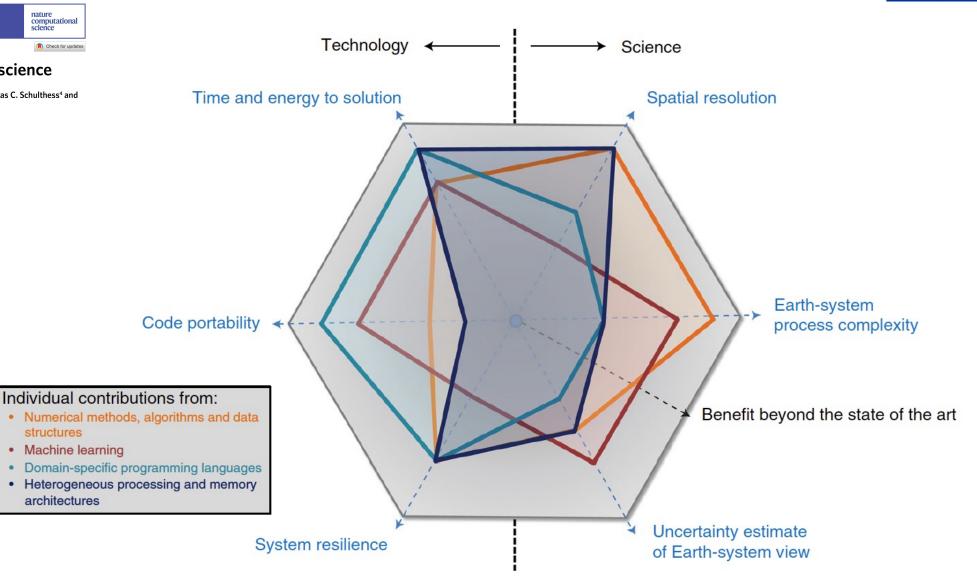
PERSPECTIVE

nature computational

The digital revolution of Earth-system science

Peter Bauer ¹² Peter D. Dueben¹, Torsten Hoefler², Tiago Quintino ²³, Thomas C. Schulthess⁴ and

Key elements to progress



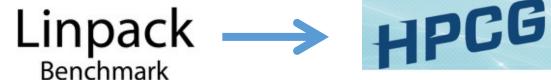
nature computational

The digital revolution of Earth-system science

Peter Bauer ¹ ¹ ², Peter D. Dueben¹, Torsten Hoefler², Tiago Quintino ³, Thomas C. Schulthess⁴ and

structures Machine learning

architectures



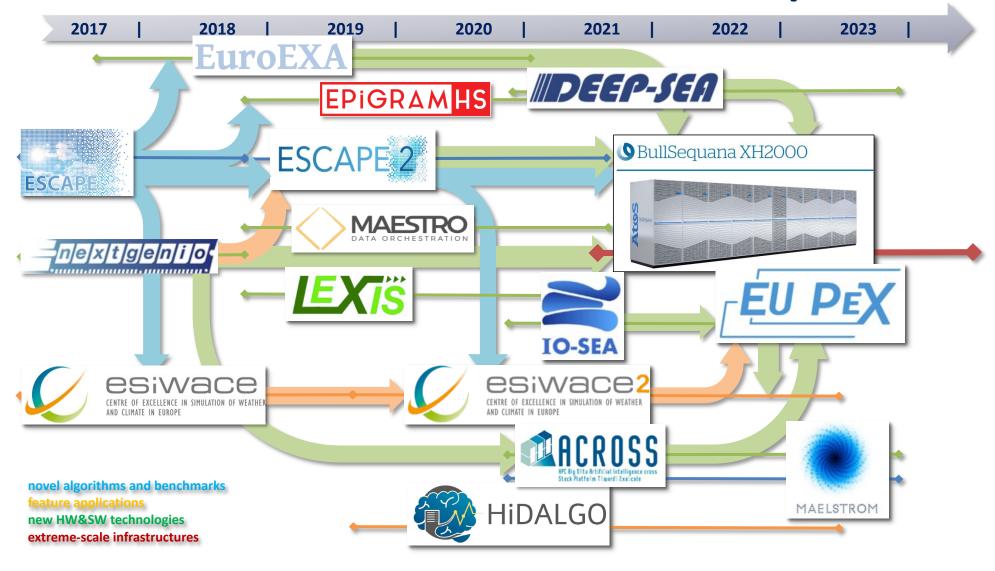
ESCAPE-2: HPCW

High-Performance Climate and Weather benchmark

HPCW benchmark tier	Specification	Options for novel developments to be included
Models	ICON ocean FV NEMO ocean FD IFS atmosphere FV IFS atmosphere DG IFS atmosphere ST ICON atmosphere FV	Mathematics (finite-difference, time stepping), DSL Mathematics (time stepping), DSL Mathematics (discretization, time stepping, fault tolerance), DSL Mathematics (discretization, time stepping, fault tolerance), DSL N/A (only as reference) Mathematics (neural networks), DSL
Systems	Kronos workload simulator	Simulating the above

Important:

- → Also for further development by ESiWACE-2
- → Candidate benchmarks for EuroHPC



Weather & climate roadmap

ESCAPE-2 2nd Dissemination Workshop

Time	Title	Speaker
14:00-14:15	Welcome and Introduction to ESCAPE-2	Peter Bauer, Nils Wedi, Daniel Thiemert
14:15-14:30	WP1: Mathematics and algorithms	Luca Bonaventura
14:30-14:45	WP2: Programming models and DSL	Carlos Osuna
14:45-15:00	WP3: Weather and Climate Benchmarks: HPCW	Erwan Raffin, David Guibert, Ralf Mueller, Michiel Van Ginderachter
15:00-15:15	WP4: VVUQ	Adrien Bruneton, Rudy Chocat, Daniel Beltran, Mario Acosta
15:15-15:30	Discussion	All
15:30-15:45	Coffee break	
15:45-16:00	Uptake of ESCAPE-2 by ESiWACE-2	Florian Ziemen, Joachim Biercamp
16:00-16:15	UK Excalibur exascale initiative	Chris Maynard, Bryan Lawrence
16:15-16:30	DoE E3SM developments	Gary Geernaert, Xujing Jia Davis
16:30-17:00	WMO Research Board action on Exascale	Kris Rowe, Mark Govett
17:00-17:15	Vulcan developments	Oli Fuhrer
17:15-17:30	Discussion	All
17:30	Adjourn	

https://confluence.ecmwf.int/display/ESCAPEII/ESCAPE-2+Home **Partners:**

