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Introduction 

1.1 Background 

ESCAPE-2 has developed world-class, extreme-scale computing capabilities for 
European operational numerical weather and climate prediction systems. It continued 
the pioneering work of the ESCAPE project. The project has attacked all three sources 
of enhanced computational performance at once, namely (i) developing and testing 
bespoke numerical methods that optimally trade off accuracy, resilience and 
performance, (ii) developing generic programming approaches that ensure code 
portability and performance portability, (iii) testing performance on HPC platforms 
offering different processor technologies. 

ESCAPE-2 has prepared weather and climate domain benchmarks that allow a much 
more realistic assessment of application specific performance on large HPC systems 
than current generic benchmarks such as HPL 1 and HPCG 2. These benchmarks are 
specifically geared towards the pre-exascale and exascale HPC infrastructures that 
the European Commission and Member States will invest in through the European 
Commission Joint Undertaking. 

ESCAPE-2 also combined generic uncertainty quantification tools for high-
performance computing originating from the energy sector with ensemble-based 
weather and climate models to quantify the effect of model and data related 
uncertainties on forecasting –a capability, which weather and climate prediction has 
pioneered since the 1960s. This collaboration combined user-friendly tools from one 
community with scientific expert knowledge from another community and achieved 
economy of scales beyond the scope of each domain. 

1.2 Scope of this deliverable 

1.2.1 Objectives of this deliverable 

Deliverable D4.6 aims to capitalize on the developments and insights of the previous 
tasks by implementing a typical operational ensemble system (HarmonEPS) in the 
URANIE framework. The goals of the deliverable are (i) integrate HarmonEPS in the 
URANIE framework; (ii) perform a typical VVUQ assessment for an entire ensemble 
prediction workload, with a focus on the sensitivity of the perturbation parameters; (iii) 
assess the computing performance of the full ensemble prediction system (EPS) chain. 

1.2.2 Work performed in this deliverable  

In this deliverable, the HARMONIE scripting system (based on EcFlow), used for 
running the ensemble predictions was adapted to integrate the tasks needed by the 
URANIE framework. For this, the typical URANIE ‘black-box approach’ – to run the 
model as black-box by only changing the input parameters – was abandoned and in 
contrast, the URANIE routines were embedded into the scripting system of the model 
framework from HARMONIE. A sensitivity study of 2m relative humidity on the surface 
field perturbations was performed to check whether the resulting model configuration 
was working. Next, the sensitivity of the spread of some basic atmospheric parameters 
(2m temperature, 2m relative humidity, 10m wind speed, 500hPa geopotential height) 
on the correlation length scale of different perturbations that are added to the model 
simulations to generate a physically consistent ensemble spread was studied and the 
most influential correlation length scale was used in an optimization exercise. Finally, 
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the different findings are discussed and some recommendations for future application 
and further development are made. 

1.2.3 Deviations and counter measures 

The content of task 4.5 of the original ESCAPE-2 proposal was changed, as it became 
apparent during the course of WP4 that (perturbations of) the initial state of NWP and 
climate models were not well suited for a potential VVUQ analysis through the URANIE 
platform. Instead, task 4.5, driven by a strong interest in calibration techniques by the 
NWP community, focused on implementing state-of-the art calibration techniques in 
the URANIE framework. 

Consequently, this deliverable does not include a sensitivity study on the perturbations 
of the initial state but instead performs a calibration/optimization study of a typical 
perturbation input parameter. 

2 Running the HARMONIE ensemble prediction system in the 
URANIE VVUQ framework 

2.1 Introduction to the HARMONIE ensemble prediction system 

The HARMONIE ensemble prediction system, also known as HarmonEPS is the 
limited-area, short-range, convection-permitting ensemble prediction system 
developed and maintained by the HIRLAM consortium (now merged with the ALADIN 
consortium to form the ACCORD consortium). The forecast model solves the non-
hydrostatic Eulerian equations in a mass-based vertical-coordinate system with semi-
implicit time stepping and semi-Lagrangian advection [1].  

There exist two configurations for handling subgrid physical phenomena. The most-
used one is the HARMONIE-AROME configuration, developed considering the deep 
convection as resolved [2]. The second configuration – HARMONIE-ALARO – has 
physics parametrization schemes that are optimised for use at multiple resolutions 
within the so-called “gray zone” where deep convection is partly resolved (2 - 10 km) 
[3]. In both configurations, the surface processes are modeled using SURFEX [4].  

For weather predictions, it is not only important to forecast the most likely scenario for 
future weather. It is equally important to quantify the uncertainties of specific 
predictions. This is typically done via the use of ensemble methods for which a number 
of slightly different weather forecasts (ensemble members) are run in parallel to provide 
a distribution of possible weather scenarios. For ensemble predictions, it is important 
that the spread of the ensemble is a good estimate for the actual uncertainty of 
predictions and the tuning of ensemble spread is therefore important during the 
development of Ensemble Prediction Systems (EPSs). HarmonEPS can account for 
uncertainties in the initial conditions (both surface and upper air), lateral boundaries, 
and model description. While HarmonEPS has different options to represent the 
uncertainty in each category, we will limit ourselves here in presenting only the default 
options. For a more detailed explanation of all possible options, the reader is referred 
to [1].  

Lateral boundary perturbations are naturally included when HarmonEPS is nested in a 
coarser-resolution or global EPS. The spread induced from the boundaries is then 
typically controlled by the selection of the coarser-model members. 
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The default perturbation strategy for upper-air initial conditions is to add perturbations 
from the nesting model using the corresponding boundary file at initial time to the 
HarmonEPS control member. When using the IFS ENS, the upper-air perturbations 
are simply the differences between the IFS ENS members and the IFS ENS control at 
initial time. 

Surface perturbations are applied to parameters in the SURFEX analysis after the 
surface data assimilation is completed. Perturbations for each parameter and member 
are created by generating an independent field of white noise and applying a recursive 
Gaussian filter until the prescribed correlation length is reached. The random noise 
field is then clipped to the range ±2 and scaled depending on the parameter [5]. 
Perturbations can be multiplicative or additive depending on the parameter. Table 1 
shows the standard deviation and type of scaling applied for each of the perturbed 
parameters.  

Model uncertainty can be modelled by running HarmonEPS in a multi-physics setup. 
Each ensemble member in HarmonEPS then has a unique combination of physics 
parametrizations. There is even the option to build a multi-model ensemble from 
HARMONIE-AROME and HARMONIE-ALARO with differences in both physics and 
dynamics. Finally, two perturbation schemes are available to represent the model 
uncertainty. HarmonEPS has the possibility to run with perturbed parametrized 
tendencies based on the adapted version [6] of the SPPT scheme [7]. HarmonEPS 
has also the option to use the stochastically perturbed parametrizations (SPP) scheme 
based on [8], where the parametrization parameters are gradually changed during the 
forecast depending on space and time. Both perturbation schemes are discussed in 
more detail in section 4. 

Table 1: Perturbed SURFEX surface variables, with their respective standard deviation and perturbation 
type. 

Parameter 

 

Short name Standard 
deviation 

Perturbation type 

Vegetation fraction VEG 0.1 Multiplicative 

Leaf area index LAI 0.1 Multiplicative 

Thermal coefficient of 
vegetation 

CV 0.1 Multiplicative 

Vegetation Surface roughness 
length over land 

Z0 0.2 Multiplicative 

Albedo ALB 0.1 Multiplicative 

Sea surface temperature SST 0.25 Additive 

Soil temperature ST 1.5 Additive 

Soil Moisture WG 0.1 Multiplicative 

Snow Depth SNOW 0.5 Multiplicative 

Surface fluxes of sea NA 0.2 Multiplicative 
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For a more in-depth description of HarmonEPS and the impact of the different 
perturbation techniques on the ensemble skill, the reader is referred to [1] and the 
references therein. 

2.2 Running HarmonEPS using the URANIE platform 

The URANIE platform is an open-source framework developed at the Alternative 
Energies and Atomic Energy Commission (CEA) in order to deal with uncertainty 
propagation, surrogate models, optimization issues and code calibration [9]. The 
URANIE platform was successfully used for a sensitivity study of the shallow-water 
equations (see [D4.2]) and sensitivity study and uncertainty quantification of the 
ACRENEB2 radiation dwarf (see [D4.4]). Here, making a rather large leap, the URANIE 
platform is used to perform a sensitivity analysis and calibration exercise of a typical 
operational ensemble forecasting system. 

2.2.1 Integrating the URANIE framework and the HarmonEPS scripting 
system 

Usually, URANIE considers the code or model under investigation as a black-box, 
requiring only a very limited amount of communication with the code of the model via 
input- and output-files. Given the complex nature of running an EPS, involving the 
staging and archiving of data and cycling of fields between different forecasts and 
assimilation cycles (see Fig. 1 for a schematic overview.), it was chosen not to consider 
HarmonEPS as a black-box, but on the contrary to integrate the individual URANIE 
tasks (e.g. selecting the input-parameter distributions, setting the namelists, gathering 
the output, etc.) in the HarmonEPS scripting system. 
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Figure 1: Schematic overview of all the different steps involved in a typical HarmonEPS ensemble 
forecast. All jobs and dependencies are managed by the EcFlow workflow package. Note that the 
staging and preparation of the boundary files (MakeCycleInput) is completely separated from the actual 
forecasts (Date), preventing a simple ‘black-box’ approach typically used in URANIE. 

The new workflow can be roughly described as follows: First URANIE is initialized. This 
means that the desired experiment (sensitivity study, calibration…) is created in 
URANIE, the number of model evaluation iterations (here all forecasts of all ensemble 
members in the selected period) is calculated and the values of the parameters or 
variables under study are set for each specific iteration. In standard URANIE 
applications, the model would be run from within the URANIE program. Here, all 
information is stored in an URANIE-readable file for later use and URANIE is exited 
and restarted after the next model iteration.  

In the next step, HarmonEPS stages all the data needed for the full forecasting period 
(MakeCycleInput in Fig. 1). Then one URANIE iteration of a full forecasting period is 
run, including the assimilation cycle and postprocessing of the output data, followed by 
the calculation and storage of the specific metrics or cost functions needed for the 
sensitivity study or calibration by URANIE (UranieMetric in Fig. 2). 
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This is repeated for each iteration given by URANIE. Finally, when all iterations are 
finished, URANIE reads in all the data needed and calculates the statistics, depending 
on the experiment created. Special care was given to the new iterative process in 
HarmonEPS such that experiments with an a priori unknown number of iterations such 
as calibration experiments can also be accommodated. 

 

Figure 2: The new EPS workflow, with the new steps involving URANIE tasks marked in red. 

2.2.2 General HarmonEPS configuration 

For all experiments discussed in this deliverable HarmonEPS runs the default 
HARMONIE-AROME configuration with a grid-spacing of 2.5 km, 65 vertical levels and 
a time-step of 60 seconds. The domain is centered over Western Europe, ranging from 
1°E to 17°W and 45.5°N to 57.5°N (see Fig. 3). The control member runs a surface 
and upper air data assimilation cycle of 3 hours. 10 ensemble members are created 
by starting from the control analysis, adding either only surface perturbations or 
tendency and parameter perturbations, depending on the experiment, thus creating an 
ensemble of 11 members. The boundary conditions are provided by IFS HRES. Prior 
to starting the sensitivity study or calibration with URANIE, the assimilation cycle was 
allowed to spin-up for 13 days, starting at 1 July 2020. The period under investigation 
covers only two days, where for each day a 36h forecast is performed at 0000 UTC. 
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Figure 3: The HarmonEPS domain used for all experiments described here. 

3 Sensitivity of RH2m BIAS on the perturbed surface variables 

3.1 Background 

While the results presented in [1] show that HarmonEPS performs quite well compared 
to IFS ENS, in-depth analysis of HarmonEPS forecasts reveals a problem with the 2m 
relative humidity (RH2m). The problem is clearly illustrated in Fig. 4, where all 
perturbed members are drier than the control member (black). Further analysis, 
running many different HarmonEPS configurations revealed the dry bias of the 
perturbed members to be region dependent and the source of the problem was 
identified to be related to the perturbation of the soil moisture (WG) [10]. 

This methodology of guestimating the source of the problem, reconfiguring and running 
the EPS by hand, investigating the results and finally validating the hypothesis is a 
tedious, complex and computationally demanding task. 

Estimating the sensitivity of an output variable on different parameters is a perfect use-
case for the Morris screening method (explained below) included in the URANIE 
package. Therefore, as a first sanity test of the new HarmonEPS-URANIE setup we 
will try to confirm the conclusion drawn in [10], identifying the soil moisture 
perturbations as the source of the dry bias seen in the perturbed ensemble members. 
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Figure 4: 2m relative humidity bias for every member of the HarmonEPS over a 15-day period (1 June 
- 15 June 2019). Taken from [10]. A perfect prediction would be unbiased and would therefore be a flat 
line at 0. 

3.2 The Morris Method 

In this experiment the Morris screening method is used to investigate the sensitivity of 
RH2m to the different perturbed surface parameters. 

The Morris method is an effective screening procedure and a more robust version of 
the One-factor-At-a-Time (OAT) variation method. Instead of varying every input 
parameter only once, the Morris method repeats the OAT principle several (r) times. 
For each iteration (called a trajectory) a different randomly chosen starting point in the 
input parameter space is used. For every parameter variation in trajectory t, the 
elementary effect (EE) is computed: 

𝐸𝐸𝑖
𝑡 = 𝐸𝐸𝑖(𝑿𝑡) =  

𝑦(𝑋1
𝑡, … , 𝑋𝑖

𝑡 , … , 𝑋𝑛
𝑡 ) − 𝑦(𝑋1

𝑡, … , 𝑋𝑖
𝑡 + ∆𝑖

𝑡, … 𝑋𝑛
𝑡 )

∆𝑖
𝑡 . 

 y is the output metric under investigation, 𝑋1 … 𝑋𝑛  are the input parameters under 

investigation, and ∆𝑖
𝑡 is the chosen variation for input parameter 𝑖 in the trajectory t. 

The recommended value for the variation is ∆=
𝑝

2(𝑝−1)
. p is called the level, the chosen 

number of intervals this range should be split into [11]. With the repetition of this 
procedure r times, resulting in 𝑟(𝑛𝑋 + 1) code evaluations, it is possible to compute 
basic statistics on the elementary effects computed for every input parameter, as 

𝜇𝑖
∗ =

1

𝑟
∑ |𝐸𝐸𝑖

𝑡|

𝑟

𝑡=1

, 

𝜎𝑖
2 =

1

𝑟 − 1
∑(𝐸𝐸𝑖

𝑡 − 𝜇𝑖
∗)2.

𝑟

𝑡=1
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Depending on the (𝜇𝑖
∗, 𝜎) values, the inputs can be sorted into different categories: 

• Input has negligible effect on the output: both 𝜇𝑖
∗ and 𝜎 are small. 

• Input has a linear effect without interaction with other inputs: 𝜇𝑖
∗ is large but 𝜎 is 

small. 

• Input has a non-linear effect and/or interaction with other inputs: both 𝜇𝑖
∗ and 𝜎 

are large. 

3.3 Experimental setup 

Here, we have chosen the perturbation standard deviations of the first 9 variables (sea 
surface flux perturbations were turned off) in Table 1 as the inputs for the sensitivity 
study. Considering the computational cost of one iteration (two 36h ensemble forecasts 
of 11 members with 3h assimilation cycle), the number of trajectories 𝑟  was kept 

reasonably small and set to 4, resulting in 𝑟(𝑛𝑋 + 1) = 40  full ensemble forecast 

evaluations. For each input, the range was set to ±10% of its default value (third 
column in Table 1) and the level p was set to 10, the URANIE default value.  

The ensemble forecasts use the default configuration explained in section 2.2.2 with 
the exception that only the surface perturbations are active. No other source of 
perturbations (IC, LBC, SPPT or SPP) is used. 

After each ensemble forecast iteration the RH2m bias of each ensemble member with 
respect to the control member is calculated and averaged over the domain and over 
all ensemble members. This averaged bias is then used as output in the Morris 
screening method and used for calculating the elementary effects.  

3.4 Results and discussion 

The results of the Morris sensitivity experiment are summarized in Fig. 5. This figure 
shows the locations of all 9 inputs in the (𝜇∗, 𝜎)-plane. The RH2m bias is only sensitive 
to the standard deviation of 4 perturbed variables, i.e. snow depth (SNOW), soil 
temperature (ST), sea surface temperature (SST) and soil moisture (WG). From these 
4 inputs, the snow depth and soil temperature standard deviation have both small 
𝜇∗and 𝜎, indicating small interaction with other inputs as well as a small effect on the 

bias. Sea surface temperature standard deviation has similar 𝜎 but larger 𝜇∗. Looking 
at the relatively large value of 𝜇∗ for soil moisture (WG), it seems the RH2m bias is 
most sensitive to the soil moisture standard deviation. This parameter also shows most 
interaction with the other inputs. 

These results identify the soil moisture as the parameter with the dominating effect on 
the RH2m bias, confirming the analysis made in [10]. However, the results here were 
found using a systematic and fully automated approach, contrary to [10] where the 
different configurations were selected based on expert-knowledge and reconfigured by 
hand. Furthermore, no expert knowledge of the inner-workings of the surface 
perturbation scheme was needed for the experiment performed here.  

Finally, we address the parameters (CV, VEG, ALB, LAI and Z0) that show no influence 
on the RH2m bias. The lack of sensitivity on albedo (ALB) and roughness length (Z0) 
is explained by the fact that these fields are only updated and thus perturbed every 10 
days. Such an update is probably not performed in the 2-day forecast window used 
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here. 

 

Figure 5: Morris screening indices of the vegetation fraction (VEG), leaf area index (LAI), thermal 
coefficient of vegetation (CV), vegetation surface roughness length over land (Z0), albedo (ALB), sea 
surface temperature (SST), soil temperature (ST), soil moisture (WG) and snow depth (SNOW) 
perturbation standard deviations for the RH2m BIAS. 

For the remaining three parameters (CV, VEG and LAI) no immediate explanation for 
the zero-sensitivity was found by the authors. However, in the months after the analysis 
we were informed that independent experiments by the HarmonEPS development 
team had revealed a bug in the surface perturbation code, causing the physiography 
related parameters CV, VEG and LAI to not be perturbed even when the surface 
perturbation scheme is switched on.  

So besides identifying the soil moisture as the probable source of the drying of the 
perturbed ensemble members, the systematic URANIE screening method was also 
able to, unbeknownst to the authors, expose a bug in the code.  

Finally, we discuss here briefly the computational performance of the full HarmonEPS 
+ URANIE workload. As expected, most computationally expensive are the iterations 
of the full forecast cycle. With one iteration taking between 8 and 12 hours using 324 
CPUs, depending on the of the load the machine. Therefore, sensitivity experiments 
demanding more iterations such as a Sobol analysis [12] can become hard to realise, 
especially when the machine has to be shared with many users.  

The computational time needed for URANIE preparation and URANIE Morris analyzing 
tasks, however, are negligible compared to the total CPU-time of the workload.  
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4 Sensitivity study and optimization of the SPPT and SPP 
correlations length scale 

4.1 Background 

As mentioned in Section 2.1 HarmonEPS includes two perturbation schemes for 
representing the model uncertainty, namely the SPPT and SPP scheme. The former 
perturbs all net physics tendencies with random 2D multiplicative noise. For each 
ensemble member, the perturbations are drawn from a different realization of a pattern 
generator with spatial and temporal correlations. In the latter 14 parameters (7 cloud, 
4 radiation, and 3 turbulence parameters), identified by physics experts as most 
uncertain, are perturbed by drawing the multiplicative perturbations independently 
(mostly from a log-normal distribution) for each parameter and ensemble member 
using the same pattern generation as described above. Finally, perturbations are 
clipped in order to stay within the physical range defined by the experts. 

In HarmonEPS, the pattern generator originally used for SPPT in [7] was replaced by 
the stochastic pattern generator (SPG) developed in [13] due to a mismatch between 
the specified and resulting pattern characteristics [1]. This pattern generator (but also 
the one originally used in SPPT) has three main parameters to be set: The standard 
deviation of the pattern generator 𝜎, The horizontal length scale 𝐿 and time scale of 
decorrelation 𝜏.  For HarmonEPS the default values used are: 𝜎 = 0.3, 𝐿 =
200 km and 𝜏 = 8h for SPPT, while 𝜎 = 3.0, 𝐿 = 200 km and 𝜏 = 12h are used for the 
SPP pattern generator. 

These values are typically either the result of manual time-consuming tuning exercises 
[e.g. 13] or arbitrarily chosen [e.g. 6]. Here such a manual tuning exercise is replaced 
by an automated optimization exercise using the Efficient Global Optimization (EGO)  
routine of the URANIE platform. A more detailed explanation about the used 
optimization technique is given below.  

Here, we first of all want to study the feasibility of using URANIE with an EPS for 
optimization rather than finding the optimal value for all pattern generator parameters. 
Therefore, only a simple setup is used where only the correlation length scale for either 
SPP or SPPT is optimized with respect to a cost function using only one verification 
metric for one typical meteorological variable. The choice for the length scale is 
arbitrary, an identical experiment for the time scale or standard variation would be as 
valuable.  

In order to determine which correlation length scale has the highest impact on which 
variable, a sensitivity study similar to the one described above is performed in section 
4.2. The most sensitive correlation length scale for all combinations of variables is then 
used in the optimization study.  

4.2 Sensitivity study 

4.2.1 Experimental setup 

The Morris screening method is again used to perform the sensitivity study. Here, the 
inputs are the correlation length scales 𝐿𝑆𝑃𝑃𝑇 and 𝐿𝑆𝑃𝑃 of the SPPT and SPP pattern 
generator respectively. As we are most interested on the effect the changes in length 
scales have on the ensemble as a whole rather than on the individual members, the 
outputs are defined as the ensemble spread of a selection of four variables, i.e. the 
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ensemble spread of 2m temperature (𝜎𝑇2𝑚), 2m relative humidity (𝜎𝑅𝐻2𝑚), 10m wind 
speed (𝜎𝑆10𝑚 ) and 500hPa geopotential height(𝜎𝐺500 ). Given the small number of 

inputs used here (i.e. 2), the number of trajectories can be increased to 𝑟 = 10 , 
resulting in 30 full ensemble forecast evaluations. The level was kept at 𝑝 = 10. 

For both length scales the boundaries were first set at [50km, 300 km]. However, this 
caused crashes in the pattern generator. By Increasing the lower bound to 100km we 
were able to prevent these crashes.  

The ensemble forecast again uses the default setup, explained in section 2.2.2 with 
the adaption that only SPPT and SPP perturbation schemes are active, meaning there 
are no IC, LBC or surface perturbations. 

4.2.2 Results and discussion 

Figure 6 shows the results of the Morris screening. For all variables the spread is most 
sensitive to changes in the SPP correlation length scale 𝐿𝑆𝑃𝑃. These results are in line 
with the work presented in [14], where it is shown that the spread added by SPP is 
typically larger than the spread added by SPPT when using the default parameters for 
both schemes. 

 

Figure 6 Morris screening indices of 𝐿𝑆𝑃𝑃𝑇 and 𝐿𝑆𝑃𝑃 for the ensemble spread of 500hPa geopotential 
(G500), 2m relative humidity (RH2m), 10m wind speed (S10m) and 2m temperature (T2m). 

Changes in 𝐿𝑆𝑃𝑃 have not only the largest impact on the spread, the larger 𝜎 indices 
indicate that the impact is also more non-linear. This is explained by the fact that SPPT 
perturbations are added at the end of the physics calculations to the net physical 
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tendencies, preventing feedbacks between the different parameterizations. The SPP 
perturbations on the other hand are added to the parameters inside the 
parametrizations. As a consequence, different parameterizations might impact each 
other and perturbations might interact within a timestep.  

To determine which variable’s spread is most sensitive to changes in 𝐿𝑆𝑃𝑃 we have 
defined the relative mean elementary effect as: 

100×
𝜇∗

< 𝑆𝑃𝑅𝐸𝐴𝐷 >all iterations
 

This relative mean elementary effect is shown in Table 2 together with the ensemble 
spread averaged over the 30 URANIE iterations for each variable. 

Variable Averaged Ensemble Spread Relative effect of 𝐿𝑆𝑃𝑃 

(100×𝜇𝑆𝑃𝑃
∗ /𝑠𝑝𝑟𝑒𝑎𝑑) 

T2m 0.94 K 3.13% 

RH2m 0.056 3.00% 

S10m 0.76 m s-1 1.14% 

G500 10.18 m 19.54% 

Table 2 For each variable the ensemble spread, averaged over the 30 URANIE iterations of the 
ensemble forecast used for the Morris screening and the relative mean elementary effect.  

From Table 2 it is clear that the changes in the correlation length scale of the SPP 
pattern generator have the largest impact on G500. Ideally, we would like to perform 
the optimization of 𝐿𝑆𝑃𝑃 using a metric based on G500. Unfortunately, observations of 
this variable are not readily available in the HarmonEPS environment. Therefore, to 
avoid the additional work of gathering and postprocessing the 500 hPa observations, 
we will use the T2m in the following optimization exercise. Observations of T2m are 
readily available as they are extracted in the postprocessing step of HarmonEPS (see 
Fig. 1). 

4.2.3 Calibration/Optimization technique 

In the context of this study, the optimization must deal with the fact that the evaluation 
of the model is performed outside the URANIE algorithm (see Section 2.2.1). When 
the time-consuming ensemble forecast is performed an additional post treatment to 
extract the output values of interest is needed.  

The Efficient Global Optimization, detailed in [15], also called Bayesian optimization 
meets the above criteria and only requires a reasonable amount of code evaluations, 
a great benefit when evaluating a time-consuming EPS. This method is based on the 
construction of a kriging surrogate (Gaussian process) and an adaptive strategy that 
assumes a compromise between the global improvement of the quality of kriging and 
the finding of an optimum. This approach identifies a new data set that is supposed to 
improve the optimization. The code evaluation and post treatment can be performed 
outside the algorithm after which the algorithm continues the optimum search. 

The EGO is organized as follows: 

1. An initial sample of the parameter under optimization is generated and 

the code is evaluated for each configuration. 
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2. A kriging surrogate (gaussian process) is trained on the results of the 

sampling. 

3. Based on the kriging variance, the Expected Improvement Criteria 

(Definition is given in [15]) is optimized to identify the next configuration 

to evaluate for improving the optimization. 

4. The code is evaluated and the results are added to the sample. 

5. The stopping criteria, that indicate when the optimization must be 

stopped, are checked. If they are not satisfied, the algorithm is repeated 

starting at step 2. 

Note that for EGO, the stopping criteria are mainly the number of evaluations that you 
can performed considering the time and CPUs that a single iteration requires. 

4.2.4 Experimental setup 

For the optimization exercise performed here, the HarmonEPS configuration is kept 
identical to the sensitivity experiment described above (Section 4.2.1). In the following, 
the SPPT pattern generator parameters are fixed at 𝜎𝑆𝑃𝑃𝑇 = 0.3, 𝐿𝑆𝑃𝑃𝑇 = 200𝑘𝑚 and 
𝜏𝑆𝑃𝑃𝑇 = 8ℎ. However, the correlation length scale 𝐿𝑆𝑃𝑃 of the SPP pattern generator 
will be optimized and the remaining two SPP parameters were kept at their default 
values (𝜎𝑆𝑃𝑃 = 3.0, 𝜏𝑆𝑃𝑃 = 12ℎ).  

The cost function used in the optimization is the continuous ranked probability score 
(CRPS) [16] defined as the quadratic measure of discrepancy between the forecast 
CDF noted 𝐹 and 𝕀(x ≥ y), the empirical CDF of the scalar observation 𝑦: 

𝐶𝑅𝑃𝑆 =  ∫ [𝐹(𝑥) −  𝕀(𝑥 ≥ 𝑦)]2d𝑥
+∞

−∞

, 

with 𝕀 the indicator function. The CRPS combines in a natural way a cost for the 
ensemble spread (-error) and a cost for the error in ensemble mean and is therefore 
an ideal candidate for the correlation length scale optimization cost function.  

The CRPS of different variables can be combined into a single cost function and the 
used optimization even allows for multiple cost functions. Here, however, we have 
chosen, as explained in the previous section, to keep things simple and define the cost 
function as the CRPS of the 2m temperature only.  

The optimization algorithm is initialized by randomly sampling 10 𝐿𝑆𝑃𝑃values using the 
URANIE Latin hypercube sampling (LHS) [17] algorithm. For each value of 𝐿𝑆𝑃𝑃 the full 
2-day ensemble forecast cycle is run and the T2m CRPS is calculated. This input is 
used by the optimizer to propose a new correlation length scale 𝐿𝑆𝑃𝑃, for which a new 
forecast cycle is run. Ideally, this process is iterated until convergence of the correlation 
length scale is reached. 

Observations for calculating the CRPS are limited to surface synoptic observation 
(SYNOP) stations and are extracted from the ECMWF mars database by the 
HarmonEPS postprocessing routines. Also, the interpolation of the forecast data to the 
SYNOP station locations is automatically performed by the HarmonEPS 
postprocessing.  

4.2.5 Results and discussion 
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Figure 7 shows the evolution of both 𝐿𝑆𝑃𝑃 and the CPRS of T2m during the successive 
iterations of the EGO. The first 10 iterations represent the LHS used to initialize the 
EGO. In iteration steps 11 and 12, the EGO explores the lower and upper limit 
respectively to improve the kriging surrogate. After 22 iteration steps an optimum 
𝐿𝑆𝑃𝑃 ≈ 230 𝑘𝑚 is found. This is reasonably close to recommended value of 200 km, 
which was found by the HarmonEPS development team. 

 

Figure 7: Evolution of 𝐿𝑆𝑃𝑃 (top) and T2m CRPS (bottom) during the EGO optimization. The first 10 
iterations represent the Latin Hypercube sampling. In the last 3 iterations we can see the convergence 
towards the optimal value. 

Obviously, the results of this (proof-of-concept) tuning exercise should not be extended 
to a general context. Also, the changes in CRPS during the optimization are rather 
small, indicating that the direct influence of 𝐿𝑆𝑃𝑃  on the CRPS is limited. For more 
general results, the cost function should include a broader selection of variables. In 
addition, all parameters of the both pattern generators (SPP and SPPT) should be 
tuned simultaneously in order to capture all relationships between the perturbation 
parameters. This is also discussed further in the next section. 

5 Conclusion and outlook 

In this work the feasibility of combining the URANIE VVUQ platform with the state-of-
the art ensemble prediction system HarmonEPS was investigated. Combining both 
scripting systems was done by abandoning the typical URANIE black-box approach 
and instead integrating the typical URANIE routines inside the HarmonEPS scripting 
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system. Although some intermediate knowledge of internal organization of 
HarmonEPS is needed1, the URANIE integration was reasonably straightforward.  

First a sensitivity study of the T2m BIAS on the perturbation standard deviations of 
different surface variables was performed. This study identified the soil moisture 
perturbation standard deviation as most influential, confirming results from earlier 
studies and ensuring that the URANIE integration in HarmonEPS was done correctly. 

Next a calibration/optimization was performed. First the SPP pattern generator 
correlation length scale and T2m were identified as the optimal input – output 
combination through a sensitivity study. Finally, this input-output was used in a-proof 
of-concept optimization exercise using the URANIE EGO optimization algorithm. The 
outcome of the optimization exercise yields a sensible outcome in line with default 
HarmonEPS SPP settings.  

The work done here focused mainly on the uncertainty quantification part of a typical 
VVUQ assessment since in the NWP and Climate community verification is best done 
by comparison with observations and for validation better-suited techniques for climate 
and NWP codes are available [e.g. 18 and D3.2] than those present in URANIE. 
Additionally, we would also like to mention that here all experiments were kept as 
simple as possible and forecast periods as short as possible given the a-priori unknown 
length and outcome of all experiments and the limited duration of the ESCAPE 2 
project.  

The results of this deliverable show that the automated tuning of model parameters 
can be performed successfully via a combination of the URANIE tool from CEA and a 
weather forecast model for full-grown ensemble prediction systems. The numerical 
tests are very demanding in terms of computational power as there are a number of 
dimensions for which it is known that an increase in the numbers would lead to better 
and more robust results: number of ensemble members N, number of start dates M, 
number of optimization iterations L, and the number of days of the forecasts O, with 
the cost of the optimization procedure scaling roughly with NxMxLxO. For this 
deliverable, the numerical tests were kept comparably simple with a single parameter 
that was optimized and relatively low numbers for N, M, L and O. However, the results 
clearly show that more can be done if more computational resources are spent. An 
optimization procedure that would, for example, tune the three length-scales and the 
three amplitudes of the SPPT scheme as used in the global IFS model will most likely 
require at least 10 forecast start dates, at least 10 ensemble members, more than 50 
iterations, and 10 forecast days already reaching 50,000 forecast days that need to be 
simulated. If a high spatial resolution is targeted – such as the operational resolution 
of the ensemble forecast at ECMWF – such an optimization could quickly fill a large 
fraction of a EuroHPC supercomputer (based on previous work [19]). If a more optimal 
configuration of model parameters for ensemble predictions is found during this 
exercise, this could have a direct impact on the quality and uncertainty quantification 
of global weather prediction. In principle, all tools that are developed within this 
deliverable would be scalable to this level of complexity. 

Considering the simple setup of the experiments performed here, the logical next step 
is to extend the forecasting period in order to increase the robustness of the results. 

                                            
1 The authors would like to express many thanks to Inger-Lise Frogner, who helped us with the initial setup of 
HarmonEPS and helped us with any issues that arose during the project. 
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The optimization technique used here allows for multiple inputs and outputs. Therefore, 
it would be interesting to extend the optimization to all SPPT and SPP parameters and 
optimize for a selection of prognostic variables. Finally, with more computing power it 
would be interesting to test the more iteration-demanding uncertainty quantification 
algorithms of URANIE. 
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